Понятия со словосочетанием «круглое число»

Кру́глыми чи́слами относительно некоторой позиционной системы счисления называют степени её основания. В этой системе счисления такие числа записываются как единица с последующими нулями. Количество нулей справа от единицы равно показателю степени основания.

Подробнее: Круглые числа

Связанные понятия

Разряд (позиция, место) — это структурный элемент представления чисел в позиционных системах счисления.
Репди́джиты (англ. repdigit, от repeated digit — повторённая цифра), также репдигиты, однообра́зные чи́сла — натуральные числа, все цифры записи которых одинаковые. Обычно подразумевается запись в десятичной системе счисления.
Гуголплекс (от англ. googolplex) — число, равное 10гугол (десяти в степени гугол), то есть 1010100. В десятичной записи число можно представить как одна единица и гугол нулей после неё.
При́знак Паска́ля — математический метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
Триморфное число — натуральное число, десятичная запись куба которого оканчивается цифрами самого этого числа.
Миллио́н или (при передаче разговорного произношения и в поэзии) мильо́н (сокращённо — млн; из фр. million, от ст.-итал. millione «большая тысяча») — натуральное число, равное тысяче тысяч.
Ты́сяча — натуральное число 1000, десять сотен, 10³. В Международной системе единиц (СИ) числу соответствуют приставки: кило — для тысячи (10³) и милли — для одной тысячной (10−3). Обозначается также римской цифрой M (лат. mille).
Гуго́л (от англ. googol) — число, в десятичной системе счисления изображаемое единицей со 100 нулями...
При́знак дели́мости — алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его называют признаком равноостаточности.
Недоста́точное число́ — натуральное число, сумма собственных делителей которого меньше самого числа.

Подробнее: Недостаточные числа
Неприкоснове́нное число́ (англ. Untouchable number) — положительное целое число, которое не может быть выражено как сумма всех собственных делителей любого целого положительного числа (в том числе самого неприкосновенного числа).
Чётность в теории чисел — характеристика целого числа, определяющая его способность делиться нацело на два.

Подробнее: Чётные и нечётные числа
Имя числительное — самостоятельная часть речи, которая обозначает число, количество и порядок предметов. Отвечает на вопросы: сколько? который?
Счастли́вый биле́т — поверье и математическое развлечение, основанное на нумерологической игре с номером проездного билета.
Фибоначчиева система счисления — смешанная система счисления для целых чисел на основе чисел Фибоначчи F2=1, F3=2, F4=3, F5=5, F6=8 и т. д.
Алгебраическая сумма — это выражение, которое можно представить в виде суммы положительных и отрицательных чисел.
Весьма избыточное число или высокоизбыточное число — это натуральное число, сумма делителей которого (включая само число) больше суммы делителей любого меньшего натурального числа.
Слегка́ избы́точное число́, или квазисоверше́нное число́ (от лат. quas(i) «наподобие», «нечто вроде») — избыточное число, сумма собственных делителей которого на единицу больше самого числа.
Числа харшад, или числа Нивена, — натуральные числа, делящиеся нацело на сумму своих цифр.
Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Трои́чная систе́ма счисле́ния — позиционная система счисления с целочисленным основанием, равным 3.
Позиционная систе́ма счисле́ния (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).
Квадратная са́жень (или саже́нь) — старорусская единица измерения площади (поземельная), упразднённая с переходом Советского Союза на метрическую систему. Мера площади, имеющая в длину и ширину по одной сажени. Равнялась 9 квадратным аршинам, 49 квадратным футам, 2304 квадратным вершкам или 7056 квадратным дюймам. В метрической системе квадратная сажень составляет 4,55 м2 или 1/22 ара («сотки»), если полагать размер аршина равным 71 см.
В математике, несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10.
Счёты (русские счёты) — простое механическое устройство (счётная доска с костями) для выполнения арифметических расчётов, согласно одной версии происходят от китайского счётного приспособления суаньпань, согласно другой имеют собственно русское происхождение.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Югер (лат. iugerum) — у древних римлян мера измерения площади поверхности, служившая для измерения поля и составлявшая собственно площадь, которую можно вспахать в день парой (uno jugo) волов, впряженных в ярмо. Причём под словом jugerum подразумевается то же, что под словом jugum (ярмо, запряжка).
Обручённые числа или квази-дружественные числа это два положительных целых числа, для которых сумма собственных делителей каждого числа на 1 больше, чем второе число. Другими слова, (m, n) — это пара обручённых чисел если s(m) = n + 1 и s(n) = m + 1, где s(n) это сумма собственных делителей числа n (аликвотная сумма от n). Эквивалентным условием будет σ1(m) = σ1(n) = m + n + 1, где σ1(n) — сумма всех делителей числа n.
Наиме́ньшее о́бщее кра́тное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка. Обозначается одним из следующих способов...
Число́ полови́нной то́чности (англ. half precision) — компьютерный формат представления чисел, занимающий в памяти половину компьютерного слова (в случае 32-битного компьютера — 16 бит или 2 байта). Диапазон значений ± 2−24(5.96E-8) — 65504. Приблизительная точность — 3 знака (10 двоичных знаков, log10(211)).
Табли́ца умноже́ния, она же табли́ца Пифаго́ра — таблица, где строки и столбцы озаглавлены множителями, а в ячейках таблицы находится их произведение. Используется для обучения школьников умножению.
Слегка́ недоста́точное число́ (почти совершенное число) — недостаточное число, сумма собственных делителей которого меньше самого числа ровно на единицу.
Миллиа́рд (сокращённо млрд) — натуральное число, изображаемое в десятичной системе счисления единицей с 9 нулями (1 000 000 000 = 109, тысяча миллионов) в системе наименования чисел с длинной шкалой.
Совершенное число́ (др.-греч. ἀριθμὸς τέλειος) — натуральное число, равное сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самого́ числа). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Неизвестно, бесконечно ли множество всех совершенных чисел.
Двенадцатеричная система счисления — позиционная система счисления с основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. Существует другая система обозначения, где для недостающих цифр используют не A и B, а T (от англ. ten, десять) или D (от лат. decem, фр. dix, десять) или X (римское десять), а также E (от англ. eleven, одиннадцать) или O (от фр. onze, одиннадцать). Кроме того, на Западе иногда вместо A используют перевёрнутую двойку (, U+218A ↊ turned digit two) и вместо B перевёрнутую...
Автоморфное число — число, десятичная запись квадрата которого оканчивается цифрами самого этого числа.
Правило сложения (правило «или») — одно из основных правил комбинаторики, утверждающее, что, если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.
Фигу́рные чи́сла — общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно, с понятием фигурного числа связано выражение «возвести число в квадрат или в куб». В теории чисел и комбинаторике фигурные числа связаны с многими другими классами целых чисел — биномиальными коэффициентами, совершенными числами, числами Мерсенна, Ферма, Фибоначчи, Люка и другими.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.

Подробнее: Квадратное треугольное число
Соизмери́мые величи́ны — величины, для которых соответственно существует общая мера. Общей мерой величин называют величину, которая целое число раз содержится в каждой из них. Если такой меры, которая укладывается целое число раз в каждую величину, не существует, то такие величины называют несоизмери́мыми. Примером несоизмеримых величин могут служить диагональ квадрата и его сторона.
Циклическое число — целое число, циклические перестановки цифр которого являются произведениями этого числа на последовательные числа. Наиболее известный пример такого числа — 142857...
Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.
В теории чисел гладким числом называется целое число, все простые делители которого малы.

Подробнее: Гладкое число
Ладонь (palm) — единица измерения расстояния, равная четырём дюймам или 10,16 сантиметрам. В древнерусской системе мер это мера длины для обозначения размера, равного ширине ладони.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я